Orbital Ultrasonic Welding of Ti-Fittings to CFRP-Tubes

Author:

Liesegang MoritzORCID,Arweiler Sophie,Beck Tilmann,Balle Frank

Abstract

Hybrid structures are important for the automotive and aeronautical industry as they have the potential to reduce vehicle or aircraft weight and to improve fuel efficiency. Continuous ultrasonic metal welding is a promising technique for hydraulic applications in aircraft to realise tubular metal/fiber reinforced polymer (FRP) hybrids. Fluid proof connections between dissimilar components can be joined by continuous welding seams. Tubular metal/FRP hybrids, produced by a new advanced variant of ultrasonic metal welding, are investigated as a potential substitute for metallic hydraulic tubes. The oscillating welding system moves around the tubular joining partners to generate a sealed orbital connection. Homogeneous joint quality is required to assure the requested component strength. Therefore, the amplitude of sonotrode displacement and the welding force are controlled to keep the induced welding energy constant and the joint quality uniform. High mechanical strength is required for a safe application in the 5000 psi hydraulic system of current and future aircraft concepts. For this study metal injection molded (MIM) titanium fittings (TiAl6V4) and carbon fiber reinforced PEEK (CF-PEEK) tubes were investigated. Process parameters for metal/FRP hybrid joining were evaluated considering their mechanical and technological properties, as well as the microstructure of the hybrid interfacial area. The entire joining area of tubular joining partners has to be in close contact before welding to assure a continuous tight joint. Hence, the titanium fitting is thermally shrunk onto the CFRP tube before ultrasonic welding. The presented orbital ultrasonic welding technology was developed for prospective industrial use and future applications of ultrasonically welded tubular multi-material-components.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3