Constructing a Finer-Resolution Forest Height in China Using ICESat/GLAS, Landsat and ALOS PALSAR Data and Height Patterns of Natural Forests and Plantations

Author:

Huang HuabingORCID,Liu CaixiaORCID,Wang Xiaoyi

Abstract

Monitoring forest height is crucial to determine the structure and biodiversity of forest ecosystems. However, detailed spatial patterns of forest height from 30 m resolution remotely sensed data are currently unavailable. In this study, we present a new method for mapping forest height by combining spaceborne Light Detection and Ranging (LiDAR) with imagery from multiple remote sensing sources, including the Landsat 5 Thematic Mapper (TM), the Phased Array L-band Synthetic Aperture Radars (PALSAR), and topographic data. The nationwide forest heights agree well with results obtained from 525 independent forest height field measurements, yielding correlation coefficient, root mean square error (RMSE), and mean absolute error (MAE) values of 0.92, 4.31 m, and 3.87 m, respectively. Forest heights derived from remotely sensed data range from 1.41 m to 38.94 m, with an average forest height of 16.08 ± 3.34 m. Mean forest heights differ only slightly among different forest types. In natural forests, conifer forests have the greatest mean forest heights, whereas in plantations, bamboo forests have the greatest mean forest heights. Important predictors for modeling forest height using the random forest regression tree method include slope, surface reflectance of red bands and HV backscatter. The uncertainty caused by the uneven distribution of Geoscience Laser Altimeter System (GLAS) footprints is estimated to be 0.64 m. After integrating PALSAR data into the model, the uncertainty associated with forest height estimation was reduced by 4.58%. Our finer-resolution forest height could serve as a benchmark to estimate forest carbon storage and would greatly contribute to better understanding the roles of ecological engineering projects in China.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3