Oil Spill Identification from Satellite Images Using Deep Neural Networks

Author:

Krestenitis Marios,Orfanidis Georgios,Ioannidis Konstantinos,Avgerinakis Konstantinos,Vrochidis Stefanos,Kompatsiaris IoannisORCID

Abstract

Oil spill is considered one of the main threats to marine and coastal environments. Efficient monitoring and early identification of oil slicks are vital for the corresponding authorities to react expediently, confine the environmental pollution and avoid further damage. Synthetic aperture radar (SAR) sensors are commonly used for this objective due to their capability for operating efficiently regardless of the weather and illumination conditions. Black spots probably related to oil spills can be clearly captured by SAR sensors, yet their discrimination from look-alikes poses a challenging objective. A variety of different methods have been proposed to automatically detect and classify these dark spots. Most of them employ custom-made datasets posing results as non-comparable. Moreover, in most cases, a single label is assigned to the entire SAR image resulting in a difficulties when manipulating complex scenarios or extracting further information from the depicted content. To overcome these limitations, semantic segmentation with deep convolutional neural networks (DCNNs) is proposed as an efficient approach. Moreover, a publicly available SAR image dataset is introduced, aiming to consist a benchmark for future oil spill detection methods. The presented dataset is employed to review the performance of well-known DCNN segmentation models in the specific task. DeepLabv3+ presented the best performance, in terms of test set accuracy and related inference time. Furthermore, the complex nature of the specific problem, especially due to the challenging task of discriminating oil spills and look-alikes is discussed and illustrated, utilizing the introduced dataset. Results imply that DCNN segmentation models, trained and evaluated on the provided dataset, can be utilized to implement efficient oil spill detectors. Current work is expected to contribute significantly to the future research activity regarding oil spill identification and SAR image processing.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 146 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3