Detection of Oil Spill in SAR Image Using an Improved DeepLabV3+

Author:

Zhang Jiahao1,Yang Pengju12ORCID,Ren Xincheng3

Affiliation:

1. School of Physics and Electronic Information, Yan’an University, Yan’an 716000, China

2. Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University, Shanghai 200433, China

3. Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan’an 716000, China

Abstract

Oil spill SAR images are characterized by high noise, low contrast, and irregular boundaries, which lead to the problems of overfitting and insufficient capturing of detailed features of the oil spill region in the current method when processing oil spill SAR images. An improved DeepLabV3+ model is proposed to address the above problems. First, the original backbone network Xception is replaced by the lightweight MobileNetV2, which significantly improves the generalization ability of the model while drastically reducing the number of model parameters and effectively addresses the overfitting problem. Further, the spatial and channel Squeeze and Excitation module (scSE) is introduced and the joint loss function of Bce + Dice is adopted to enhance the sensitivity of the model to the detailed parts of the oil spill area, which effectively solves the problem of insufficient capture of the detailed features of the oil spill area. The experimental results show that the mIOU and F1-score of the improved model in an oil spill region in the Gulf of Mexico reach 80.26% and 88.66%, respectively. In an oil spill region in the Persian Gulf, the mIOU and F1-score reach 81.34% and 89.62%, respectively, which are better than the metrics of the control model.

Funder

National Natural Science Foundation of China

Shaanxi Key Research and Development Program

Natural Science Basic Research Plan in Shaanxi Province of China

Graduate Education Innovation Program of Yan’an University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3