Abstract
An accurate and spatially continuous estimation of terrestrial latent heat flux (LE) is crucial to the management and planning of water resources for arid and semi-arid areas, for which LE estimations from different satellite sensors unfortunately often contain data gaps and are inconsistent. Many integration approaches have been implemented to overcome these limitations; however, most suffer from either the persistent bias of relying on datasets at only one resolution or the spatiotemporal inconsistency of LE products. In this study, we exhibit an integration case in the midstream of the Heihe River Basin of northwest China by using a multi-resolution Kalman filter (MKF) method to develop continuous and consistent LE maps from satellite LE datasets across different resolutions. The Moderate Resolution Imaging Spectroradiometer (MODIS) LE product (MOD16), the Landsat-based LE product derived from the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensor, and ground observations of eddy covariance flux tower from June to September 2012 are used. The integrated results illustrate that data gaps of MOD16 dropped to less than 0.4% from the original 27–52%, and the root-mean-square error (RMSE) between the LE products decreased by 50.7% on average. Our findings indicate that the MKF method has excellent capacity to fill data gaps, reduce uncertainty, and improve the consistency of multiple LE datasets at different resolutions.
Funder
the Strategic Priority Research Program of the Chinese Academy of Sciences
the Natural Science Fund of China
Subject
General Earth and Planetary Sciences
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献