Hybrid Theory‐Guided Data Driven Framework for Calculating Irrigation Water Use of Three Staple Cereal Crops in China

Author:

Bo Yong123,Li Xueke4ORCID,Liu Kai1ORCID,Wang Shudong15,Li Dehui12,Xu Yu6,Wang Mengmeng7ORCID

Affiliation:

1. State Key Laboratory of Remote Sensing Science Aerospace Information Research Institute Chinese Academy of Sciences Beijing China

2. University of Chinese Academy of Sciences Beijing China

3. S. K. Lee Honors College China University of Geosciences (Wuhan) Wuhan China

4. Department of Earth and Environmental Science University of Pennsylvania Philadelphia PA USA

5. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CICFEMD) Nanjing University of Information Science & Technology Nanjing China

6. School of Geographical Sciences Northeast Normal University Changchun China

7. School of Geography and Information Engineering China University of Geosciences (Wuhan) Wuhan China

Abstract

AbstractCurrent irrigation water use (IWU) estimation methods confront uncertainties warranting further attention, primarily stemming from constraints within model structure and data quality. This study proposes a hybrid framework that integrates multiple machine learning (ML) methods with theory‐guided strategies to calculate IWU for three principal cereal crops within the Chinese agricultural landscape. We generated high resolution time series data sets of evapotranspiration and surface soil moisture (SM) using remote sensing resources. ML techniques, along with the Bayesian three‐cornered hat ensemble, were employed to drive multiple remote sensing‐derived data sets in IWU calculation. We applied two theory‐guided mechanisms to quantify irrigation signals: first, converting original SM values into logarithmic terms, and second, extracting process‐based SM residuals. Proposed framework has been validated at 12 field stations across China, yielding coefficient of determination (R2) ranging from 0.54 to 0.70, and root mean square error (RMSE) spanning 278–335 mm/yr. Our framework demonstrates considerable strength in IWU estimation when compared to reported IWU values form 341 cities across China. Specifically, for rice, wheat, and maize, the R2 values range from 0.78 to 0.83, 0.68 to 0.76, and 0.53 to 0.64, respectively, with corresponding RMSE measuring 0.22–0.25, 0.10–0.12, and 0.11–0.13 km3/yr, respectively. These findings highlight the effectiveness of theory‐guided strategies in discerning irrigation‐related information, thereby improving overall model performance. Attention should be directed toward the uncertainties in evapotranspiration and precipitation products on model performance, which remained modest, with a relative change of less than 5%.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3