Co-Training for Visual Object Recognition Based on Self-Supervised Models Using a Cross-Entropy Regularization

Author:

Díaz Gabriel,Peralta Billy,Caro Luis,Nicolis OriettaORCID

Abstract

Automatic recognition of visual objects using a deep learning approach has been successfully applied to multiple areas. However, deep learning techniques require a large amount of labeled data, which is usually expensive to obtain. An alternative is to use semi-supervised models, such as co-training, where multiple complementary views are combined using a small amount of labeled data. A simple way to associate views to visual objects is through the application of a degree of rotation or a type of filter. In this work, we propose a co-training model for visual object recognition using deep neural networks by adding layers of self-supervised neural networks as intermediate inputs to the views, where the views are diversified through the cross-entropy regularization of their outputs. Since the model merges the concepts of co-training and self-supervised learning by considering the differentiation of outputs, we called it Differential Self-Supervised Co-Training (DSSCo-Training). This paper presents some experiments using the DSSCo-Training model to well-known image datasets such as MNIST, CIFAR-100, and SVHN. The results indicate that the proposed model is competitive with the state-of-art models and shows an average relative improvement of 5% in accuracy for several datasets, despite its greater simplicity with respect to more recent approaches.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhanced robotic tactile perception with spatiotemporal sensing and logical reasoning for robust object recognition;Applied Physics Reviews;2024-06-01

2. Self-Attention Pooling-Based Long-Term Temporal Network for Action Recognition;IEEE Transactions on Cognitive and Developmental Systems;2023-03

3. Self-Supervised Learning for High-Resolution Remote Sensing Images Change Detection With Variational Information Bottleneck;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2023

4. Safe Multi-view Co-training for Semi-supervised Regression;2022 IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA);2022-10-13

5. Application of Artificial Intelligence in Diagnosis of Craniopharyngioma;Frontiers in Neurology;2022-01-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3