Comparison of Rainfall Partitioning and Estimation of the Utilisation of Available Water in a Monoculture Beech Forest and a Mixed Beech-Oak-Linden Forest

Author:

Novosadová Kateřina,Kadlec JiříORCID,Řehořková Štěpánka,Matoušková MarieORCID,Urban JosefORCID,Pokorný RadekORCID

Abstract

Monoculture forests formed by Fagus sylvatica L. belong to one of the most sensitive forest ecosystems, mainly at low altitudes. Cultivation of this species in mixed stands should reduce its sensitivity to drought in the vegetation period, which is why we researched the water balance in one pure-beech (i.e., monoculture) and one beech–oak–linden (i.e., mixed) forest. This research was carried out in Drahanská vrchovina in the Czech Republic in the period 2019–2021. The total precipitation was measured, together with its partitions (i.e., throughfall and stemflow), and the crown interception was also calculated. The total forest transpiration was calculated from the values measured on the sample trees. The values of each rainfall partition and transpiration (and their percentages) were compared. The rainfall partitions in the monoculture forest differed from those in the mixed forest. While, on average, the annual percentages of the throughfall, stemflow and crown interception in the monoculture forest were 63%, 6% and 31%, respectively, these partitions in the mixed forest were 76%, 2% and 22%, respectively. The crown interception was greater in the monoculture (31% of precipitation) and the effective precipitation (i.e., the sum of throughfall and stemflow) was greater in the mixed forest (78% of precipitation). The greatest differences (in each rainfall partition) between the monoculture and mixed forest were in the summer and winter. The throughfall was greater in the mixed forest (ca. 22% in the summer and ca. 12% in the winter), and the stemflow was greater in the monoculture forest (ca. 66% in the summer and ca. 51% in the winter). The mean annual transpiration was 318 (±52) mm in the monoculture and 451 (±58) mm in the mixed forest, i.e., about 99 (±65) mm more in the mixed forest than in the monoculture forest. The transpiration, in comparison with the effective precipitation, made up, on average, 70% of the effective precipitation in the monoculture forest. On the other hand, the transpiration reached 71% (in 2019), 74% (in 2020) and even 100% (in 2021) of the effective precipitation in the mixed forest. Our results show that an oak–beech–linden mixed forest can manage water better than a beech monoculture because more precipitation leaked through the mixed forest onto the soil than through the monoculture, especially via the throughfall in the summer. On the other hand, the amount of water that transpired was greater in the mixed forest than in the monoculture. However, the utilisation of the effective precipitation by trees was very similar in the monoculture in all three years, while, in the mixed forest, the utilisation of the effective water by trees increased, which may have been caused by the saturation of the deeper soil layers with water in the first two years of measurement. We can, Therefore, say that, at lower altitudes, it will be more suitable in the future to cultivate beech in mixed forests because of the assumed lack of water (mainly in early spring and summer).

Funder

NAZV, Ministry of Agriculture of the Czech Republic

Technology Agency of the Czech Republic

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference64 articles.

1. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge. [1st ed.].

2. Influence of meteorological drought on environmental flows in mountain catchments;Kuriqi;Ecol. Indic.,2021

3. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems;Lindner;For. Ecol. Manag.,2010

4. Seppälä, R., Buck, A., and Katila, P. (2009). Adaptation of Forests and People to Climate Change: A Global Assessment Report, IUFRO. [1st ed.].

5. A global overview of drought and heta-induced tree mortality revers emerging climate change risks for forests;Allen;For. Ecol. Manag.,2010

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3