Xylem function and leaf physiology in European beech saplings during and after moderate and severe drought stress

Author:

Hájíčková Martina123ORCID,Plichta Roman12,Volařík Daniel12,Urban Josef12,Matoušková Marie12,Gebauer Roman12

Affiliation:

1. Department of Forest Botany , Dendrology and Geobiocoenology, , Zemědělská 1, 613 00 Brno , Czech Republic

2. Mendel University in Brno , Dendrology and Geobiocoenology, , Zemědělská 1, 613 00 Brno , Czech Republic

3. Department of Vegetation Ecology, Institute of Botany, The Czech Academy of Sciences , Lidická 25/27, 60200 Brno , Czech Republic

Abstract

Abstract The extreme drought events in the last years caused high mortality amongst European beech (Fagus sylvatica L.) across Central Europe. Thus, knowledge of the response of beech to drought and its ability to recover its xylem and leaf functions after drought release is needed to better understand beech survival. In this study, changes in xylem function, leaf gas exchange, chlorophyll fluorescence and morphology of European beech saplings during drought and recovery phases were assessed. Beech saplings were exposed to three different watering intensities—well-watered (W), moderately drought stressed (M) and severely drought stressed (S) for 25 days, and then saplings were rewatered for 14 days. Reduced irrigation caused a drop in shoot water potential to −1.1 and −3.1 MPa in M and S saplings, respectively. Stomatal conductance in M and S saplings decreased to 15 and 5 per cent of that in W saplings, respectively, and it corresponded with a decrease in the photosynthesis rate and chlorophyll fluorescence parameters. Leaf water content and shoot functional xylem area were significantly affected by drought only in S saplings. Hence, these parameters could be used as sensitive indicators that distinguish plants at no risk of mortality from those at increasing risk under drought stress. In S saplings, some leaves also dried from the edges, leaving a green active central part. During the recovery phase, the leaf gas exchange and chlorophyll fluorescence parameters had recovered 4 days after rewatering in M saplings, whereas in S saplings, they were still lower after 2 weeks. Moreover, xylem function did not fully recover in S saplings till the end of the recovery phase. Hence, subsequent drought periods, even of lower intensity, could lead to tree mortality if tree functions have not fully recovered from the previous drought.

Funder

Czech Science Foundation

Ministry of Education, Youth and Sports of the Czech Republic

Publisher

Oxford University Press (OUP)

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3