Affiliation:
1. School of Software, Jiangxi Normal University, Nanchang 330022, China
2. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430000, China
Abstract
Convolutional Neural Networks have been widely used in remote sensing scene classification. Since this kind of model needs a large number of training samples containing data category information, a Generative Adversarial Network (GAN) is usually used to address the problem of lack of samples. However, GAN mainly generates scene data samples that do not contain category information. To address this problem, a novel supervised adversarial Lie Group feature learning network is proposed. In the case of limited data samples, the model can effectively generate data samples with category information. There are two main differences between our method and the traditional GAN. First, our model takes category information and data samples as the input of the model and optimizes the constraint of category information in the loss function, so that data samples containing category information can be generated. Secondly, the object scale sample generation strategy is introduced, which can generate data samples of different scales and ensure that the generated data samples contain richer feature information. After large-scale experiments on two publicly available and challenging datasets, it is found that our method can achieve better scene classification accuracy even with limited data samples.
Funder
The National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献