A Scene Classification Model Based on Global-Local Features and Attention in Lie Group Space

Author:

Xu Chengjun12ORCID,Shu Jingqian1,Wang Zhenghan1,Wang Jialin1

Affiliation:

1. School of Software, Jiangxi Normal University, Nanchang 330022, China

2. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430072, China

Abstract

The efficient fusion of global and local multi-scale features is quite important for remote sensing scene classification (RSSC). The scenes in high-resolution remote sensing images (HRRSI) contain many complex backgrounds, intra-class diversity, and inter-class similarities. Many studies have shown that global features and local features are helpful for RSSC. The receptive field of a traditional convolution kernel is small and fixed, and it is difficult to capture global features in the scene. The self-attention mechanism proposed in transformer effectively alleviates the above shortcomings. However, such models lack local inductive bias, and the calculation is complicated due to the large number of parameters. To address these problems, in this study, we propose a classification model of global-local features and attention based on Lie Group space. The model is mainly composed of three independent branches, which can effectively extract multi-scale features of the scene and fuse the above features through a fusion module. Channel attention and spatial attention are designed in the fusion module, which can effectively enhance the crucial features in the crucial regions, to improve the accuracy of scene classification. The advantage of our model is that it extracts richer features, and the global-local features of the scene can be effectively extracted at different scales. Our proposed model has been verified on publicly available and challenging datasets, taking the AID as an example, the classification accuracy reached 97.31%, and the number of parameters is 12.216 M. Compared with other state-of-the-art models, it has certain advantages in terms of classification accuracy and number of parameters.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3