Modeling and Analysis of Autonomous Agents’ Decisions in Learning to Cross a Cellular Automaton-Based Highway

Author:

Xie ShengkunORCID,Lawniczak Anna T.,Gan Chong

Abstract

For a better understanding of the nature of complex systems modeling, computer simulations and the analysis of the resulting data are major tools which can be applied. In this paper, we study a statistical modeling problem of data coming from a simulation model that investigates the correctness of autonomous agents’ decisions in learning to cross a cellular automaton-based highway. The goal is a better understanding of cognitive agents’ performance in learning to cross a cellular automaton-based highway with different traffic density. We investigate the effects of parameters’ values of the simulation model (e.g., knowledge base transfer, car creation probability, agents’ fear and desire to cross the highway) and their interactions on cognitive agents’ decisions (i.e., correct crossing decisions, incorrect crossing decisions, correct waiting decisions, and incorrect waiting decisions). We firstly utilize canonical correlation analysis (CCA) to see if all the considered parameters’ values and decision types are significantly statistically correlated, so that no considered dependent variables or independent variables (i.e., decision types and configuration parameters, respectively) can be omitted from the simulation model in potential future studies. After CCA, we then use the regression tree method to explore the effects of model configuration parameters’ values on the agents’ decisions. In particular, we focus on the discussion of the effects of the knowledge base transfer, which is a key factor in the investigation on how accumulated knowledge/information about the agents’ performance in one traffic environment affects the agents’ learning outcomes in another traffic environment. This factor affects the cognitive agents’ decision-making abilities in a major way in a new traffic environment where the cognitive agents start learning from existing accumulated knowledge/information about their performance in an environment with different traffic density. The obtained results provide us with a better understanding of how cognitive agents learn to cross the highway, i.e., how the knowledge base transfer as a factor affects the experimental outcomes. Furthermore, the proposed methodology can become useful in modeling and analyzing data coming from other computer simulation models and can provide an approach for better understanding a factor or treatment effect.

Publisher

MDPI AG

Subject

Applied Mathematics,Modelling and Simulation,General Computer Science,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3