Abstract
The present paper deals with nonlinear, non-monotonic data regression. This paper introduces an efficient algorithm to perform data transformation from non-monotonic to monotonic to be paired with a statistical bivariate regression method. The proposed algorithm is applied to a number of synthetic and real-world non-monotonic data sets to test its effectiveness. The proposed novel non-isotonic regression algorithm is also applied to a collection of data about strontium isotope stratigraphy and compared to a LOWESS regression tool.
Subject
Applied Mathematics,Computational Mathematics,General Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献