Abstract
We present a new algorithm for the approximate evaluation of the inverse square root for single-precision floating-point numbers. This is a modification of the famous fast inverse square root code. We use the same “magic constant” to compute the seed solution, but then, we apply Newton–Raphson corrections with modified coefficients. As compared to the original fast inverse square root code, the new algorithm is two-times more accurate in the case of one Newton–Raphson correction and almost seven-times more accurate in the case of two corrections. We discuss relative errors within our analytical approach and perform numerical tests of our algorithm for all numbers of the type float.
Subject
Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science
Reference46 articles.
1. Digital Arithmetic;Ercegovac,2003
2. Computer Arithmetic: Algorithms and Hardware Designs;Parhami,2010
3. AltiVec extension to PowerPC accelerates media processing
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献