Teleoperated Locomotion for Biobot between Japan and Bangladesh

Author:

Ariyanto MochammadORCID,Refat Chowdhury Mohammad MasumORCID,Zheng Xiaofeng,Hirao Kazuyoshi,Wang Yingzhe,Morishima KeisukeORCID

Abstract

Biobot-based insects have been investigated so far for various applications such as search and rescue operations, environmental monitoring, and discovering the environment. These applications need a strong international collaboration to complete the tasks. However, during the COVID-19 pandemic, most people could not easily move from one country to another because of the travel ban. In addition, controlling biobots is challenging because only experts can operate the cockroach behavior with and without stimulated response. In order to solve this issue, we proposed a user-friendly teleoperation user interface (UI) to monitor and control the biobot between Japan and Bangladesh without onsite operation by experts. This study applied Madagascar hissing cockroaches (MHC) as a biobot hybrid robot. A multithreading algorithm was implemented to run multiple parallel computations concurrently on the UI. Virtual network computing (VNC) was implemented on the teleoperation UI as remote communication for streaming real-time video from Japan to Bangladesh and sending remote commands from Bangladesh to Japan. In the experiments, a remote operator successfully steered the biobot to follow a predetermined path through a developed teleoperation UI with a time delay of 275 ms. The proposed interactive and intuitive UI enables a promising and reliable system for teleoperated biobots between two remote countries.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Feedback control of automatic navigation for cyborg cockroach without external motion capture system;Heliyon;2024-03

2. Experimental Modeling and Variable Structure Control for Cyborg Cockroaches;IEEE Control Systems Letters;2024

3. Human Part Recognition for Intelligent Cyborg Insect Using an Extremely Low-Resolution Thermopile Array Sensor;2023 IEEE 19th International Conference on Automation Science and Engineering (CASE);2023-08-26

4. Multi-Cyborg Insect-Linked Formation for Object Transportation;2023 IEEE International Conference on Mechatronics and Automation (ICMA);2023-08-06

5. Cyborg Insect Perception Classification Using Machine Learning;2023 International Conference on Machine Learning and Cybernetics (ICMLC);2023-07-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3