Double Adaptive PI-Structure for Regulating a Microgrid DC Bus Using a Flyback-Based Battery Charger/Discharger Converter

Author:

Ramos-Paja Carlos AndresORCID,Bastidas-Rodriguez Juan DavidORCID,Saavedra-Montes Andres JulianORCID

Abstract

DC microgrids are composed of loads, renewable sources, and storage devices that require control and protection to operate safely. The flyback converter is an alternative to connect paralleled batteries with nominal voltage DC buses; however, until now, complex controllers have been proposed, making difficult their implementation. On the other hand, when the voltage of a DC microgrid is not properly controlled, the loads may be damaged due to the voltage outside of the safe range. Therefore, proposed in this paper are two adaptive PI-structures to control a battery charger based on a flyback converter to be used in DC microgrids. The first adaptive current controller regulates the magnetizing current for stabilizing the system, and the second adaptive voltage controller regulates the voltage of the DC bus to protect the elements of the microgrid. The methodology to design the adaptive parameters of the PI-structures is developed as follows: first, the power stage of the flyback converter is introduced to derive a control-oriented model. The battery and the DC bus of the microgrid, which are interfaced by the flyback converter, are represented with widely accepted approaches. The second step is focused on modeling the system. The flyback converter, which includes a capacitance to model the DC microgrid, is represented by a dynamic model. The differential equations are averaged, and several transfer functions of the main variables are obtained. In the third step, the transfer functions are used to design the PI adaptive current controller and the PI adaptive voltage controller. In the last step, several recommendations are made to implement the power and control stages in low-cost hardware. An application example with realistic parameters is carried out in PSIM to validate the controller loops design. A battery of 12 V is connected to a DC microgrid of 48 V through a flyback converter with a switching frequency of 50 kHz. The settling time and deviation of the DC microgrid voltage, after a perturbation, are 0.845 ms and 2.04 V respectively, while the maximum values are adjusted to be 1 ms and 2.4 V. The simulation results validate the proposed procedure and the effectiveness of the PI-structures in regulating the magnetizing current and the DC bus voltage.

Funder

Universidad Nacional de Colombia

Instituto Tecnológico Metropolitano

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3