The Research on Bus Voltage Stabilization Control of Off-Grid Photovoltaic DC Microgrid under Impact Load

Author:

Zhang Yu123ORCID,Lu Ziguang1,Lu Quan13ORCID,Wei Shuhao2

Affiliation:

1. The College of Electrical Engineering, Guangxi University, Nanning 530004, China

2. The College of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541004, China

3. Guangxi Key Laboratory of Building New Energy and Energy Saving, Guilin 541004, China

Abstract

The solar power generation includes certain randomness and volatility, coupled with dynamic load involved in power fluctuations, which renders microgrid having certain unplanned instantaneous power during the process of real-time operation, so as to affect the stability of DC bus voltage. This paper, through constructing a model of off-grid photovoltaic DC microgrid under impact load characteristics, aiming at the fluctuate problems of the DC bus voltage caused by impact load, puts forward a fast response of hybrid energy-storing system composed of supercapacitors and batteries and superiors peak regulation capability to shave the peak and fill the valley of the microgrid. The researches on the strategy of double closed-loop voltage stabilization of blended energy storage system are made and the shortcomings of the double closed-loop voltage control of voltage and electricity are analyzed. And based on this, the tactics of new and double closed-loop voltage control of inner ring of power and the energy outer ring of DC bus capacitance are put forward and examined by simulation and experiment. The experiments prove that this method can more effectively suppress the influence of the fluctuations of impact load power on the DC bus voltage and further improves the system’s stability.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3