A Multiple Response Prediction Model for Dissimilar AA-5083 and AA-6061 Friction Stir Welding Using a Combination of AMIS and Machine Learning

Author:

Kraiklang Rungwasun1ORCID,Chueadee Chakat1,Jirasirilerd Ganokgarn2,Sirirak Worapot3ORCID,Gonwirat Sarayut4ORCID

Affiliation:

1. Department of Industrial Engineering, Faculty of Engineering and Technology, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand

2. Department of Industrial and Environmental Management Engineering, Faculty of Liberal Arts and Sciences, Sisaket Rajabhat University, Sisaket 33000, Thailand

3. Department of Industrial Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna Chiang Rai, Chiang Rai 57120, Thailand

4. Department of Computer Engineering and Automation, Faculty of Engineering and Industrial Technology, Kalasin University, Kalasin 46000, Thailand

Abstract

This study presents a methodology that combines artificial multiple intelligence systems (AMISs) and machine learning to forecast the ultimate tensile strength (UTS), maximum hardness (MH), and heat input (HI) of AA-5083 and AA-6061 friction stir welding. The machine learning model integrates two machine learning methods, Gaussian process regression (GPR) and a support vector machine (SVM), into a single model, and then uses the AMIS as the decision fusion strategy to merge SVM and GPR. The generated model was utilized to anticipate three objectives based on seven controlled/input parameters. These parameters were: tool tilt angle, rotating speed, travel speed, shoulder diameter, pin geometry, type of reinforcing particles, and tool pin movement mechanism. The effectiveness of the model was evaluated using a two-experiment framework. In the first experiment, we used two newly produced datasets, (1) the 7PI-V1 dataset and (2) the 7PI-V2 dataset, and compared the results with state-of-the-art approaches. The second experiment used existing datasets from the literature with varying base materials and parameters. The computational results revealed that the proposed method produced more accurate prediction results than the previous methods. For all datasets, the proposed strategy outperformed existing methods and state-of-the-art processes by an average of 1.35% to 6.78%.

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3