Application of SVM and Chi-Square Feature Selection for Sentiment Analysis of Indonesia’s National Health Insurance Mobile Application

Author:

Hokijuliandy Ewen1,Napitupulu Herlina1ORCID,Firdaniza 1ORCID

Affiliation:

1. Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 45363, Indonesia

Abstract

(1) Background: sentiment analysis is a computational technique employed to discern individuals opinions, attitudes, emotions, and intentions concerning a subject by analyzing reviews. Machine learning-based sentiment analysis methods, such as Support Vector Machine (SVM) classification, have proven effective in opinion classification. Feature selection methods have been employed to enhance model performance and efficiency, with the Chi-Square method being a commonly used technique; (2) Methods: this study analyzes user reviews of Indonesia’s National Health Insurance (Mobile JKN) application, evaluating model performance and identifying optimal hyperparameters using the F1-Score metric. Sentiment analysis is conducted using a combined approach of SVM classification and Chi-Square feature selection; (3) Results: the sentiment analysis of user reviews for the Mobile JKN application reveals a predominant tendency towards positive reviews. The best model performance is achieved with an F1-Score of 96.82%, employing hyperparameters where C is set to 10 and a “linear” kernel; (4) Conclusions: this study highlights the effectiveness of SVM classification and the significance of Chi-Square feature selection in sentiment analysis. The findings offer valuable insights into users’ sentiments regarding the Mobile JKN application, contributing to the improvement of user experience and advancing the field of sentiment analysis.

Funder

Universitas Padjadjaran

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference40 articles.

1. Sibuea, F., Hardhana, B., and Widiantini, W. (2022). Profil Kesehatan Indonesia Tahun 2021, Kementerian Kesehatan Republik Indonesia.

2. Universal Health Coverage in Indonesia: Concept, Progress, and Challenges;Agustina;Lancet,2019

3. Anam, K. (2023, February 15). Pandemi Dorong Inovasi Layanan Digital BPJS Kesehatan. Available online: https://news.detik.com/berita/d-5758142/pandemi-dorong-inovasi-layanan-digital-bpjs-kesehatan.

4. (2023, March 03). Humas BPJS Kesehatan Ikuti Perkembangan Zaman, Mobile JKN Satu Genggaman Untuk Berbagai Kemudahan. Available online: https://www.bpjs-kesehatan.go.id/bpjs/post/read/2020/1671/Ikuti-Perkembangan-Zaman-Mobile-JKN-Satu-Genggaman-Untuk-Berbagai-Kemudahan.

5. Nasukawa, T., and Yi, J. (2003, January 23–25). Sentiment Analysis: Capturing Favorability Using Natural Language Processing. Proceedings of the 2nd International Conference on Knowledge Capture, Sanibel Island, FL, USA.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Agarwood Classification using the Electronic Nose Method;2024 International Seminar on Intelligent Technology and Its Applications (ISITIA);2024-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3