Automatic Building Detection from High-Resolution Remote Sensing Images Based on Joint Optimization and Decision Fusion of Morphological Attribute Profiles

Author:

Wang ChaoORCID,Zhang YanORCID,Chen Xiaohui,Jiang HaoORCID,Mukherjee Mithun,Wang ShuaiORCID

Abstract

High-resolution remote sensing (HRRS) images, when used for building detection, play a key role in urban planning and other fields. Compared with the deep learning methods, the method based on morphological attribute profiles (MAPs) exhibits good performance in the absence of massive annotated samples. MAPs have been proven to have a strong ability for extracting detailed characterizations of buildings with multiple attributes and scales. So far, a great deal of attention has been paid to this application. Nevertheless, the constraints of rational selection of attribute scales and evidence conflicts between attributes should be overcome, so as to establish reliable unsupervised detection models. To this end, this research proposes a joint optimization and fusion building detection method for MAPs. In the pre-processing step, the set of candidate building objects are extracted by image segmentation and a set of discriminant rules. Second, the differential profiles of MAPs are screened by using a genetic algorithm and a cross-probability adaptive selection strategy is proposed; on this basis, an unsupervised decision fusion framework is established by constructing a novel statistics-space building index (SSBI). Finally, the automated detection of buildings is realized. We show that the proposed method is significantly better than the state-of-the-art methods on HRRS images with different groups of different regions and different sensors, and overall accuracy (OA) of our proposed method is more than 91.9%.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3