High-Resolution Remote-Sensing Image-Change Detection Based on Morphological Attribute Profiles and Decision Fusion

Author:

Wang Chao123,Liu Hui4,Shen Yi1,Zhao Kaiguang3,Xing Hongyan1ORCID,Wu Haotian1

Affiliation:

1. Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)/Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing 210044, China

2. Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing Nanchang Institute of Technology, Nanchang 330099, China

3. College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster 44691, USA

4. College of Computer and Information Engineering, Hohai University, Nanjing 211100, China

Abstract

Change detection (CD) is essential for accurate understanding of land surface changes with multitemporal Earth observation data. Due to the great advantages in spatial information modeling, Morphological Attribute Profiles (MAPs) are becoming increasingly popular for improving the recognition ability in CD applications. However, most of the MAPs-based CD methods are implemented by setting the scale parameters of Attribute Profiles (APs) manually and ignoring the uncertainty of change information from different sources. To address these issues, a novel method for CD in high-resolution remote sensing (HRRS) images based on morphological attribute profiles and decision fusion is proposed in this study. By establishing the objective function based on the minimum of average interscale correlation, a morphological attribute profile with adaptive scale parameters (ASP-MAPs) is presented to exploit the spatial structure information. On this basis, a multifeature decision fusion framework based on the Dempster–Shafer (D-S) theory is constructed for obtaining the CD map. Experiments of multitemporal HRRS images from different sensors have shown that the proposed method outperforms the other advanced comparison CD methods, and the overall accuracy (OA) can reach more than 83.9%.

Funder

Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3