Comparison between Three Registration Methods in the Case of Non-Georeferenced Close Range of Multispectral Images

Author:

Fernández Claudio IgnacioORCID,Haddadi Ata,Leblon Brigitte,Wang JinfeiORCID,Wang Keri

Abstract

Cucumber powdery mildew, which is caused by Podosphaera xanthii, is a major disease that has a significant economic impact in cucumber greenhouse production. It is necessary to develop a non-invasive fast detection system for that disease. Such a system will use multispectral imagery acquired at a close range with a camera attached to a mobile cart’s mechanic extension. This study evaluated three image registration methods applied to non-georeferenced multispectral images acquired at close range over greenhouse cucumber plants with a MicaSense® RedEdge camera. The detection of matching points was performed using Speeded-Up Robust Features (SURF), and outliers matching points were removed using the M-estimator Sample Consensus (MSAC) algorithm. Three geometric transformations (affine, similarity, and projective) were considered in the registration process. For each transformation, we mapped the matching points of the blue, green, red, and NIR band images into the red-edge band space and computed the root mean square error (RMSE in pixel) to estimate the accuracy of each image registration. Our results achieved an RMSE of less than 1 pixel with the similarity and affine transformations and of less than 2 pixels with the projective transformation, whatever the band image. We determined that the best image registration method corresponded to the affine transformation because the RMSE is less than 1 pixel and the RMSEs have a Gaussian distribution for all of the bands, but the blue band.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3