GNSS-Based Narrow-Angle UV Camera Targeting: Case Study of a Low-Cost MAD Robot

Author:

Gyrichidi Ntmitrii1ORCID,Romanov Alexey M.1ORCID,Trofimov Oleg V.1ORCID,Eroshenko Stanislav A.2ORCID,Matrenin Pavel V.23ORCID,Khalyasmaa Alexandra I.2ORCID

Affiliation:

1. Institute of Artificial Intelligence, MIREA—Russian Technological University (RTU MIREA), 119454 Moscow, Russia

2. Ural Power Engineering Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620002 Ekaterinburg, Russia

3. Power Supply Systems Department, Novosibirsk State Technical University, 630073 Novosibirsk, Russia

Abstract

One of the key challenges in Multi-Spectral Automatic Diagnostic (MAD) robot design is the precise targeting of narrow-angle cameras on a specific part of the equipment. The paper shows that a low-cost MAD robot, whose navigation system is based on open-source ArduRover firmware and a pair of low-cost Ublox F9P GNSS receivers, can inspect the 8 × 4 degree ultraviolet camera bounding the targeting error within 0.5 degrees. To achieve this result, we propose a new targeting procedure that can be implemented without any modifications in ArduRover firmware and outperforms more expensive solutions based on LiDAR SLAM and UWB. This paper will be interesting to the developers of robotic systems for power equipment inspection because it proposes a simple and effective solution for MAD robots’ camera targeting and provides the first quantitative analysis of the GNSS reception conditions during power equipment inspection. This analysis is based on the experimental results collected during the inspection of the overhead power transmission lines and equipment inspections on the open switchgear of different power plants. Moreover, it includes not only satellite, dilution of precision, and positioning/heading estimation accuracy but also the direct measurements of angular errors that could be achieved on operating power plants using GNSS-only camera targeting.

Funder

Russian Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3