Multi-Block Mixed Sample Semi-Supervised Learning for SAR Target Recognition

Author:

Tian Ye,Sun Jianguo,Qi Pengyuan,Yin Guisheng,Zhang Liguo

Abstract

In recent years, synthetic aperture radar (SAR) automatic target recognition has played a crucial role in multiple fields and has received widespread attention. Compared with optical image recognition with massive annotation data, lacking sufficient labeled images limits the performance of the SAR automatic target recognition (ATR) method based on deep learning. It is expensive and time-consuming to annotate the targets for SAR images, while it is difficult for unsupervised SAR target recognition to meet the actual needs. In this situation, we propose a semi-supervised sample mixing method for SAR target recognition, named multi-block mixed (MBM), which can effectively utilize the unlabeled samples. During the data preprocessing stage, a multi-block mixed method is used to interpolate a small part of the training image to generate new samples. Then, the new samples are used to improve the recognition accuracy of the model. To verify the effectiveness of the proposed method, experiments are carried out on the moving and stationary target acquisition and recognition (MSTAR) data set. The experimental results fully demonstrate that the proposed MBM semi-supervised learning method can effectively address the problem of annotation insufficiency in SAR data sets and can learn valuable information from unlabeled samples, thereby improving the recognition performance.

Funder

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3