3D Networks of Ge Quantum Wires in Amorphous Alumina Matrix

Author:

Basioli LovroORCID,Tkalčević MarijaORCID,Bogdanović-Radović IvaORCID,Dražić Goran,Nadazdy Peter,Siffalovic PeterORCID,Salamon Krešimir,Mičetić MajaORCID

Abstract

Recently demonstrated 3D networks of Ge quantum wires in an alumina matrix, produced by a simple magnetron sputtering deposition enables the realization of nanodevices with tailored conductivity and opto-electrical properties. Their growth and ordering mechanisms as well as possibilities in the design of their structure have not been explored yet. Here, we investigate a broad range of deposition conditions leading to the formation of such quantum wire networks. The resulting structures show an extraordinary tenability of the networks’ geometrical properties. These properties are easily controllable by deposition temperature and Ge concentration. The network’s geometry is shown to retain the same basic structure, adjusting its parameters according to Ge concentration in the material. In addition, the networks’ growth and ordering mechanisms are explained. Furthermore, optical measurements demonstrate that the presented networks show strong confinement effects controllable by their geometrical parameters. Interestingly, energy shift is the largest for the longest quantum wires, and quantum wire length is the main parameter for control of confinement. Presented results demonstrate a method to produce unique materials with designable properties by a simple self-assembled growth method and reveal a self-assembling growth mechanism of novel 3D ordered Ge nanostructures with highly designable optical properties.

Funder

Hrvatska Zaklada za Znanost

Slovak Research and Development Agency

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3