Growth Rate, Dry Matter Accumulation, and Partitioning in Soybean (Glycine max L.) in Response to Defoliation under High-Rainfall Conditions

Author:

Raza Muhammad AliORCID,Gul Hina,Yang Feng,Ahmed MukhtarORCID,Yang Wenyu

Abstract

The frequency of heavy rains is increasing with climate change in regions that already have high annual rainfall (i.e., Sichuan, China). Crop response under such high-rainfall conditions is to increase dry matter investment in vegetative parts rather than reproductive parts. In the case of soybean, leaf redundancy prevails, which reduces the light transmittance and seed yield. However, moderate defoliation of soybean canopy could reduce leaf redundancy and improve soybean yield, especially under high-rainfall conditions. Therefore, the effects of three defoliation treatments (T1, 15%; T2, 30%; and T3, 45% defoliation from the top of the soybean canopy; defoliation treatments were applied at the pod initiation stage of soybean) on the growth and yield parameters of soybean were evaluated through field experiments in the summer of 2017, 2018, and 2019. All results were compared with nondefoliated soybean plants (CK) under high-rainfall conditions. Compared with CK, treatment T1 significantly (p < 0. 05) improved the light transmittance and photosynthetic rate of soybean. Consequently, the leaf greenness was enhanced by 22%, which delayed the leaf senescence by 13% at physiological maturity. Besides, compared to CK, soybean plants achieved the highest values of crop growth rate in T1, which increased the total dry matter accumulation (by 6%) and its translocation to vegetative parts (by 4%) and reproductive parts (by 8%) at physiological maturity. This improved soybean growth and dry matter partitioning to reproductive parts in T1 enhanced the pod number (by 23%, from 823.8 m−2 in CK to 1012.7 m−2 in T1) and seed number (by 11%, from 1181.4 m−2 in CK to 1311.7 m−2 in T1), whereas the heavy defoliation treatments considerably decreased all measured growth and yield parameters. On average, treatment T1 increased soybean seed yield by 9% (from 2120.2 kg ha−1 in CK to 2318.2 kg ha−1 in T1), while T2 and T3 decreased soybean seed yield by 19% and 33%, respectively, compared to CK. Overall, these findings indicate that the optimum defoliation, i.e., T1 (15% defoliation), can decrease leaf redundancy and increase seed yield by reducing the adverse effects of mutual shading and increasing the dry matter translocation to reproductive parts than vegetative parts in soybean, especially under high-rainfall conditions. Future studies are needed to understand the internal signaling and the molecular mechanism controlling and regulating dry matter production and partitioning in soybean, especially from the pod initiation stage to the physiological maturity stage.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3