Biophenolic Profile Modulations in Olive Tissues as Affected by Manganese Nutrition

Author:

Vidović NikolinaORCID,Pasković IgorORCID,Lukić IgorORCID,Žurga PaulaORCID,Majetić Germek Valerija,Grozić KristinaORCID,Cukrov Marin,Marcelić Šime,Ban Dean,Talhaoui Nassima,Palčić IgorORCID,Rubinić Vedran,Goreta Ban SmiljanaORCID

Abstract

Manganese (Mn) is an essential element that intervenes in several plant metabolic processes. The olive tree, and its fruits and leaves, are known as a source of nutraceuticals since they are rich in biophenols. However, there is still a serious lack of data about biophenolic distribution in olive stems and roots under Mn fertilisation. In this context, our study aimed to examine the effects of Mn fertilisation on the biophenolic profile in the leaves, stems, and roots of the ‘Istarska bjelica’ olive cultivar. The experiment was set up in a greenhouse, during a period of five months, as a random block design consisting of three treatments with varying Mn concentrations in full-strength Hoagland’s nutrient solution (0.2 µM Mn, 12 µM Mn, and 24 µM Mn). The obtained results indicate that the amount of Mn in the examined olive plant tissues was significantly higher under 12 µM Mn and 24 µM Mn treatments compared to that of the 0.2 µM Mn treatment. While the concentration of biophenols varied in roots depending on the compound in question, a strong positive impact of the increased Mn concentration in nutrient solution (12 µM Mn and 24 µM Mn) on the concentrations of the main biophenolic compounds was observed in stems. The concentration of oleuropein in leaves almost doubled at 24 µM Mn, with the highest Mn concentration, as compared to the 0.2 µM Mn treatment. The obtained results led to the conclusion that the supply of Mn could enhance the concentration of some biologically active compounds in olives grown hydroponically, implying a critical need for further investigation of Mn fertilisation practices in the conventional olive farming system.

Funder

Hrvatska Zaklada za Znanost

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3