Abstract
Saprolegnia parasitica, the causative agent of saprolegniosis in fish, and Aphanomyces astaci, the causative agent of crayfish plague, are oomycete pathogens that cause economic losses in aquaculture. Since toxic chemicals are currently used to control them, we aimed to investigate their inhibition by essential oils of sage, rosemary, and bay laurel as environmentally acceptable alternatives. Gas Chromatography–Mass Spectrometry (GC–MS) analysis showed that the essential oils tested were rich in bioactive volatiles, mainly monoterpenes. Mycelium and zoospores of A. astaci were more sensitive compared to those of S. parasitica, where only sage essential oil completely inhibited mycelial growth. EC50 values (i.e., concentrations of samples at which the growth was inhibited by 50%) for mycelial growth determined by the radial growth inhibition assay were 0.031–0.098 µL/mL for A. astaci and 0.040 µL/mL for S. parasitica. EC50 values determined by the zoospore germination inhibition assay were 0.007–0.049 µL/mL for A. astaci and 0.012–0.063 µL/mL for S. parasitica. The observed inhibition, most pronounced for sage essential oil, could be partly due to dominant constituents of the essential oils, such as camphor, but more likely resulted from a synergistic effect of multiple compounds. Our results may serve as a basis for in vivo experiments and the development of environmentally friendly methods to control oomycete pathogens in aquaculture.
Funder
Hrvatska Zaklada za Znanost
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献