Hydrogen Nanobubble Water Delays Petal Senescence and Prolongs the Vase Life of Cut Carnation (Dianthus caryophyllus L.) Flowers

Author:

Li Longna,Yin Qianlan,Zhang Tong,Cheng Pengfei,Xu Sheng,Shen WenbiaoORCID

Abstract

The short vase life of cut flowers limits their commercial value. To ameliorate this practical problem, this study investigated the effect of hydrogen nanobubble water (HNW) on delaying senescence of cut carnation flowers (Dianthuscaryophyllus L.). It was observed that HNW had properties of higher concentration and residence time for the dissolved hydrogen gas in comparison with conventional hydrogen-rich water (HRW). Meanwhile, application of 5% HNW significantly prolonged the vase life of cut carnation flowers compared with distilled water, other doses of HNW (including 1%, 10%, and 50%), and 10% HRW, which corresponded with the alleviation of fresh weight and water content loss, increased electrolyte leakage, oxidative damage, and cell death in petals. Further study showed that the increasing trend with respect to the activities of nucleases (including DNase and RNase) and protease during vase life period was inhibited by 5% HNW. The results indicated that HNW delayed petal senescence of cut carnation flowers through reducing reactive oxygen species accumulation and initial activities of senescence-associated enzymes. These findings may provide a basic framework for the application of HNW for postharvest preservation of agricultural products.

Funder

Foshan Agriculture Science and Technology Project

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3