Abstract
In potato (Solanum tuberosum L.), protoplast techniques are limited to a few genotypes; thus, the use of regular regeneration procedures of multicellular explants causes us to face complexities associated to CRISPR/Cas9 gene editing efficiency and final identification of individuals. Geminivirus-based replicons contained in T-DNAs could provide an improvement to these procedures considering their cargo capability. We built a Bean yellow dwarf virus-derived replicon vector, pGEF-U, that expresses all the editing reagents under a multi-guide RNA condition, and the Green Fluorescent Protein (GFP) marker gene. Agrobacterium-mediated gene transfer experiments were carried out on ‘Yagana-INIA’, a relevant local variety with no previous regeneration protocol. Assays showed that pGEF-U had GFP transient expression for up to 10 days post-infiltration when leaf explants were used. A dedicated potato genome analysis tool allowed for the design of guide RNA pairs to induce double cuts of genes associated to enzymatic browning (StPPO1 and 2) and to cold-induced sweetening (StvacINV1 and StBAM1). Monitoring GFP at 7 days post-infiltration, explants led to vector validation as well as to selection for regeneration (34.3% of starting explants). Plant sets were evaluated for the targeted deletion, showing individuals edited for StPPO1 and StBAM1 genes (1 and 4 lines, respectively), although with a transgenic condition. While no targeted deletion was seen in StvacINV1 and StPPO2 plant sets, stable GFP-expressing calli were chosen for analysis; we observed different repair alternatives, ranging from the expected loss of large gene fragments to those showing punctual insertions/deletions at both cut sites or incomplete repairs along the target region. Results validate pGEF-U for gene editing coupled to regular regeneration protocols, and both targeted deletion and single site editings encourage further characterization of the set of plants already generated.
Funder
Fondo de Fomento al Desarrollo Científico y Tecnológico
Fondo Nacional de Desarrollo Científico y Tecnológico
Comisión Nacional de Investigación Científica y Tecnológica
Instituto Investigaciones Agropecuarias Chile
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献