Rapid Accumulation of Proline Enhances Salinity Tolerance in Australian Wild Rice Oryza australiensis Domin

Author:

Nguyen Ha Thi Thuy,Das Bhowmik Sudipta,Long HaoORCID,Cheng Yen,Mundree Sagadevan,Hoang Linh Thi MyORCID

Abstract

Proline has been reported to play an important role in helping plants cope with several stresses, including salinity. This study investigates the relationship between proline accumulation and salt tolerance in an accession of Australian wild rice Oryza australiensis Domin using morphological, physiological, and molecular assessments. Seedlings of O. australiensis wild rice accession JC 2304 and two other cultivated rice Oryza sativa L. cultivars, Nipponbare (salt-sensitive), and Pokkali (salt-tolerant), were screened at 150 mM NaCl for 14 days. The results showed that O. australiensis was able to rapidly accumulate free proline and lower osmotic potential at a very early stage of salt stress compared to cultivated rice. The qRT-PCR result revealed that O. australiensis wild rice JC 2304 activated proline synthesis genes OsP5CS1, OsP5CS2, and OsP5CR and depressed the expression of proline degradation gene OsProDH as early as 1 h after exposure to salinity stress. Wild rice O. australiensis and Pokkali maintained their relative water content and cell membrane integrity during exposure to salinity stress, while the salt-sensitive Nipponbare failed to do so. An analysis of the sodium and potassium contents suggested that O. australiensis wild rice JC 2304 adapted to ionic stress caused by salinity by maintaining a low Na+ content and low Na+/K+ ratio in the shoots and roots. This demonstrates that O. australiensis wild rice may use a rapid accumulation of free proline as a strategy to cope with salinity stress.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3