Ectomycorrhizal Inoculation Enhances the Salt Tolerance of Quercus mongolica Seedlings

Author:

Bai Xiao-NingORCID,Hao Han,Hu Zeng-Hui,Leng Ping-Sheng

Abstract

Salt stress harms the growth and development of plants, and the degree of soil salinization in North China is becoming increasingly severe. Ectomycorrhiza (ECM) is a symbiotic system formed by fungi and plants that can improve the growth and salt tolerance of plants. No studies to date have examined the salt tolerance of Quercus mongolica, a typical ectomycorrhizal tree species of temperate forests in the northern hemisphere. Here, we inoculated Q. mongolica with two ectomycorrhizal fungi (Gomphidius viscidus; Suillus luteus) under NaCl stress to characterize the effects of ECM. The results showed that the symbiotic relationship of Q. mongolica with G. viscidus was more stable than that with S. luteus. The cross-sectional area of roots increased after inoculation with the two types of ectomycorrhizal fungi. Compared with the control group, plant height, soluble sugar content, and soluble protein content of leaves were 1.62, 2.41, and 2.04 times higher in the G. viscidus group, respectively. Chlorophyll (Chl) content, stomatal conductance (Gs), and intracellular CO2 concentration (Ci) were significantly higher in Q. mongolica inoculated with ectomycorrhizal fungi than in the control, but differences in the net photosynthetic rate (Pn), transpiration rate (Tr), and photosystem II maximum photochemical efficiency (Fv/Fm) were lower. The relative conductivity of Q. mongolica inoculated with the two ectomycorrhizal fungi was consistently lower than that of non-mycorrhizal seedlings, with the effect of G. viscidus more pronounced than that of S. luteus. The malondialdehyde (MDA) content showed a similar pattern. Peroxidase (POD) and catylase (CAT) levels in mycorrhizal seedlings were generally higher than those of non-mycorrhizal seedlings under normal conditions, and were significantly higher than those of non-mycorrhizal seedlings on the 36th and 48th day after salt treatment, respectively. Overall, the results indicated that the salt tolerance of Q. mongolica seedlings was improved by ectomycorrhizal inoculation.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3