The Effect of Plant Growth Compensation by Adding Silicon-Containing Fertilizer under Light Stress Conditions

Author:

Semenova Natalya A.ORCID,Smirnov Alexandr A.ORCID,Grishin Andrey A.ORCID,Pishchalnikov Roman Y.ORCID,Chesalin Denis D.,Gudkov Sergey V.ORCID,Chilingaryan Narek O.ORCID,Skorokhodova Anastasia N.,Dorokhov Alexey S.,Izmailov Andrey Y.

Abstract

The effects of different spectral compositions of light-emitting diode (LED) sources and fertilizer containing biologically active silicon (Si) in the nutrient solution on morphological and physiological plant response were studied. Qualitative indicators and the productivity of plants of a red-leaved and a green-leaved lettuce were estimated. Lettuce was grown applying low-volume hydroponics in closed artificial agroecosystems. The positive effect of Si fertilizer used as a microadditive in the nutrient solution on the freshly harvested biomass was established on the thirtieth day of vegetation under LEDs. Increase in productivity of the red-leaved lettuce for freshly harvested biomass was 26.6%, while for the green-leaved lettuce no loss of dry matter was observed. However, being grown under sodium lamps, a negative impact of Si fertilizer on productivity of both types of plants was observed: the amount of harvested biomass decreased by 22.6% and 30.3% for the green- and red-leaved lettuces, respectively. The effect of using Si fertilizer dramatically changed during the total growing period: up to the fifteenth day of cultivation, a sharp inhibition of the growth of both types of lettuce was observed; then, by the thirtieth day of LED lighting, Si fertilizer showed a stress-protective effect and had a positive influence on the plants. However, by the period of ripening there was no effect of using the fertilizer. Therefore, we can conclude that the use of Si fertilizers is preferable only when LED irradiation is applied throughout the active plant growth period.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3