Transcriptomic Analysis for the Identification of Metabolic Pathway Genes Related to Toluene Response in Ardisia pusilla

Author:

Xu Junping,Ahn Chang Ho,Shin Ju Young,Park Pil Man,An Hye Ryun,Kim Yae-Jin,Lee Su Young

Abstract

Toluene is an industrial raw material and solvent that can be found abundantly in our daily life products. The amount of toluene vapor is one of the most important measurements for evaluating air quality. The evaluation of toluene scavenging ability of different plants has been reported, but the mechanism of plant response to toluene is only partially understood. In this study, we performed RNA sequencing (RNA-seq) analysis to detect differential gene expression in toluene-treated and untreated leaves of Ardisiapusilla. A total of 88,444 unigenes were identified by RNA-seq analysis, of which 49,623 were successfully annotated and 4101 were differentially expressed. Gene ontology analysis revealed several subcategories of genes related to toluene response, including cell part, cellular process, organelle, and metabolic processes. We mapped the main metabolic pathways of genes related to toluene response and found that the differentially expressed genes were mainly involved in glycolysis/gluconeogenesis, starch and sucrose metabolism, glycerophospholipid metabolism, carotenoid biosynthesis, phenylpropanoid biosynthesis, and flavonoid biosynthesis. In addition, 53 transcription factors belonging to 13 transcription factor families were identified. We verified 10 differentially expressed genes related to metabolic pathways using quantitative real-time PCR and found that the results of RNA-seq were positively correlated with them, indicating that the transcriptome data were reliable. This study provides insights into the metabolic pathways involved in toluene response in plants.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3