Flower color modification through co-overexpression of the VtF3′5′H and RhNHX genes in Rosa hybrida

Author:

Xu JunpingORCID,Shin Ju Young,Park Pil Man,An Hye Ryun,Kim Yae-Jin,Kim Se Jin,Lee Su Young

Abstract

AbstractRoses (Rosa hybrida) are a highly merchandised flower but lack blue varieties. Overexpression of the flavonoid 3′,5′-hydroxylase (F3′5′H) gene can increase the accumulation of blue pigment (delphinidin anthocyanin). However, sometimes the effect of F3′5′H gene alone is inadequate for producing blue flowers. Furthermore, the internal environment of the cell, such as an increase in pH, can also help the conversion of anthocyanins to blue pigments. Nonetheless, genetic engineering methods can simultaneously introduce multiple genes at the same time to regulate the development of blue pigments to achieve the ultimate breeding goal of producing blue color in roses. In the present study, to simultaneously adjust the accumulation of delphinidin and vacuolar pH, we introduced the Viola tricolor flavonoid 3′,5′-hydroxylase (VtF3′5′H) and Rosa hybrida Na+/H+ exchanger (RhNHX) genes into the white rose line “KR056002” using Agrobacterium-mediated transformation. The quantitative real time polymerase chain reaction (qRT-PCR) results showed that the heterologous genes in the transgenic lines were highly expressed in petals and leaves, and simultaneously promoted the expression of related anthocyanin synthesis structural genes. Obvious color changes were observed in both petals and young leaves, especially when petals changed from white to red-purple. The formation of delphinidin was not detected in the petals of control plants, whereas the petals of transgenic lines had higher delphinidin content (135–214 μg/l) and increased pH value (0.45–0.53) compared with those of control plants.

Publisher

Springer Science and Business Media LLC

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3