How to Develop IoT Cloud e-Health Systems Based on FIWARE: A Lesson Learnt

Author:

Celesti Antonio,Fazio Maria,Galán Márquez Fermín,Glikson Alex,Mauwa Hope,Bagula AntoineORCID,Celesti Fabrizio,Villari Massimo

Abstract

Nowadays, the penetration of sensors and actuators in different application fields is revolutionizing all aspects of our daily life. One of the major sectors that is taking advantage of such cutting-edge cheap smart devices is healthcare. In this context, Remote Patient Monitoring (RPM) at home represents a tempting opportunity for hospitals to reduce clinical costs and to improve the quality of life of both patients and their families. It allows patients to be monitored remotely by means networks of Internet of Things (IoT) medical devices equipped with sensors and actuators that collect healthcare data from patients and send them to a Cloud-based Hospital Information System (HIS) for processing. Up to now, many different proprietary software systems have been developed as stand-along expensive solutions, presenting interoperability, extensibility, and scalability issues. In recent years, the European Commission (EC) has promoted the wide adoption of FIWARE technology, launching 16 Industrial Accelerators focusing on different application fields. One of these, i.e., FICHe, is specialized in healthcare, providing the guidelines on how to develop eHealth systems. This paper focuses on how to compose new cutting-edge IoT and Cloud-based Cyber Physical Health Sytem (CPHS) services and applications interconnected with remote medical sensors and actuators using FIWARE technology in the context envisioned by FICHe. In particular, we discuss the design and development of an RPM system implemented through the collaboration between the Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) “Bonino Pulejo” (i.e., a clinical and research healthcare centre specialized in the treatment of neuro lesions), University of Messina, IBM Research, Telefónica, and the University of the Western Cape in South Africa. The description of our best practice provides a model and guidelines for the development of lightweight and low cost RPM services for rural and isolated areas, with the expectation of expanding healthcare to the developing world and in general allows us to outline how to deal with the real adoption of the FIWARE technology in an e-health project.

Funder

Ministero della Salute

Publisher

MDPI AG

Subject

Control and Optimization,Computer Networks and Communications,Instrumentation

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. INVESTIGATION OF TELEREHABILITATION RESEARCH AREA BY TOPIC MODELLING METHOD;Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi;2023-12-28

2. A tool for the data notarization with the Blockchain to ensure security and privacy;2023 IEEE International Workshop on Metrology for Living Environment (MetroLivEnv);2023-05-29

3. Securing Critical User Information over the Internet of Medical Things Platforms Using a Hybrid Cryptography Scheme;Future Internet;2023-02-28

4. The Fourth Industrial Revolution: A Technological Wave of Change;Artificial Intelligence;2023-02-15

5. Perspective Chapter: Internet of Things in Healthcare – New Trends, Challenges and Hurdles;Internet of Things - New Trends, Challenges and Hurdles;2023-02-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3