Next Generation Computing and Communication Hub for First Responders in Smart Cities

Author:

Shaposhnyk Olha1ORCID,Lai Kenneth1ORCID,Wolbring Gregor2ORCID,Shmerko Vlad1ORCID,Yanushkevich Svetlana1ORCID

Affiliation:

1. Biometric Technologies Laboratory, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada

2. Cummings School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada

Abstract

This paper contributes to the development of a Next Generation First Responder (NGFR) communication platform with the key goal of embedding it into a smart city technology infrastructure. The framework of this approach is a concept known as SmartHub, developed by the US Department of Homeland Security. The proposed embedding methodology complies with the standard categories and indicators of smart city performance. This paper offers two practice-centered extensions of the NGFR hub, which are also the main results: first, a cognitive workload monitoring of first responders as a basis for their performance assessment, monitoring, and improvement; and second, a highly sensitive problem of human society, the emergency assistance tools for individuals with disabilities. Both extensions explore various technological-societal dimensions of smart cities, including interoperability, standardization, and accessibility to assistive technologies for people with disabilities. Regarding cognitive workload monitoring, the core result is a novel AI formalism, an ensemble of machine learning processes aggregated using machine reasoning. This ensemble enables predictive situation assessment and self-aware computing, which is the basis of the digital twin concept. We experimentally demonstrate a specific component of a digital twin of an NGFR, a near-real-time monitoring of the NGFR cognitive workload. Regarding our second result, a problem of emergency assistance for individuals with disabilities that originated as accessibility to assistive technologies to promote disability inclusion, we provide the NGFR specification focusing on interactions based on AI formalism and using a unified hub platform. This paper also discusses a technology roadmap using the notion of the Emergency Management Cycle (EMC), a commonly accepted doctrine for managing disasters through the steps of mitigation, preparedness, response, and recovery. It positions the NGFR hub as a benchmark of the smart city emergency service.

Funder

Natural Sciences and Engineering Research Council of Canada

Social Sciences and Humanities Research Council of Canada

Department of National Defence’s Innovation for Defence Excellence and Security (IDEaS) program in Canada

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3