Adsorption of Phosphate and Nitrate Ions on Oxidic Substrates Prepared with a Variable-Charge Lithological Material

Author:

Prato José GregorioORCID,Millán Fernando Carlos,González Luisa Carolina,Ríos Anita Cecilia,López Esteban,Ríos Iván,Navas Siboney,Márquez Andrés,Carrero Julio CésarORCID,Díaz Juan Isidro

Abstract

This work evaluates phosphate and nitrate ion adsorption from aqueous solutions on calcined adsorbent substrates of variable charge, prepared from three granulometric fractions of an oxidic lithological material. The adsorbent material was chemically characterized, and N2 gas adsorption (BET), X-ray diffraction, and DTA techniques were applied. The experimental conditions included the protonation of the beds with HCl and H2SO4 and the study of adsorption isotherms and kinetics. The lithological material was moderately acidic (pH 5) with very little solubility (electrical conductivity 0.013 dS m−1) and a low cation exchange capacity (53.67 cmol (+) kg−1). The protonation reaction was more efficient with HCl averaging 0.745 mmol versus 0.306 mmol with H2SO4. Likewise, the HCl-treated bed showed a better adsorption of PO4−3 ions (3.296 mg/100 g bed) compared to the H2SO4-treated bed (2.579 mg/100 g bed). The isotherms showed great affinity of the PO4−3 ions with the oxide surface, and the data fit satisfactorily to the Freundlich model, suggesting a specific type of adsorption, confirmed by the pseudo-second-order kinetic model. In contrast, the nitrate ions showed no affinity for the substrate (89.7 µg/100 g for the HCl-treated bed and 29.3 µg/100 g bed for the H2SO4-treated bed). Amphoteric iron and aluminum oxides of variable charges present in the lithological material studied allow for their use as adsorbent beds as an alternative technique to eliminate phosphates and other ions dissolved in natural water.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3