Adsorption of Pb (II) ions on variable charge oxidic calcined substrates with chemically modified surface

Author:

PRATO JOSE G.ORCID,Millán Fernando,Rangel Marialy,Márquez Andrés,González Luisa CarolinaORCID,Ríos Iván,García César,Rondón Carlos,Wang Enju

Abstract

Background: The adsorption process is an alternative method for treating natural and waste waters, with heavy metals. Oxidic lithological materials, rich in iron and aluminum amphoteric oxides, with pH-dependent surface charges, are a reliable medium for ionic adsorption. Being thermally resistant, these materials can be used to prepare a calcined substrate which is chemically treated in an acid or alkaline solution to enlarge surface positive or negative charge density, making it possible anion as well as cation adsorption reactions from aqueous solutions. Oxidic lithological materials use is a low-cost alternative for filtering system because of its availability and ease of preparation and application. Methods: Present paper shows results of the adsorption reaction of Pb+2 ions on calcined substrates prepared with oxidic lithologic material. The study was performed on the substrate with chemically modified surface in alkaline medium as well as on non-treated surface. Results: Results show L-type isotherms for the adsorption on the activated substrate, indicative affinity between adsorbate and adsorbent. Average value of adsorption capacity (k) for activated substrate is around 3.7 times greater (1791.73±13.06) compared to the respective average k value for the non-activated substrate (491.54±31.97), during the adsorption reaction, 0.35 and 0.26 mmolH+ of proton are produced on the activated and non-activated substrate respectively using a 1 mM Pb+2 solution and 72.2 and 15.6 mmolH+ using a 10 mM Pb+2 solution. This acidification agrees with the theoretic model of transitional metals chemisorption on amphoteric oxides of Fe, Al, Ti and Mn present in lithological material used for the preparation of adsorbent substrates confirming the information given by the L-type isotherms. Conclusions: Results suggest that these oxidic lithologic materials show great potential as an alternative technique for water treatment and heavy metal retention from contaminated waters using a low-cost and reliable adsorption system.

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3