Wireless Channel Propagation Characteristics and Modeling Research in Rice Field Sensor Networks

Author:

Gao Zhenran,Li Weijing,Zhu YanORCID,Tian Yongchao,Pang Fangrong,Cao Weixing,Ni Jun

Abstract

Wireless channel propagation characteristics and models are important to ensure the communication quality of wireless sensor networks in agriculture. Wireless channel attenuation experiments were carried out at different node antenna heights (0.8 m, 1.2 m, 1.6 m, and 2.0 m) in the tillering, jointing, and grain filling stages of rice fields. We studied the path loss variation trends at different transmission distances and analyzed the differences between estimated values and measured values of path loss in a free space model and a two-ray model. Regression analysis of measured path loss values was used to establish a one-slope log-distance model and propose a modified two-slope log-distance model. The attenuation speed in wireless channel propagation in rice fields intensified with rice developmental stage and the transmission range had monotone increases with changes in antenna height. The relative error (RE) of estimation in the free space model and the two-ray model under four heights ranged from 6.48–15.49% and 2.09–13.51%, respectively, and these two models were inadequate for estimating wireless channel path loss in rice fields. The ranges of estimated RE for the one-slope and modified two-slope log-distance models during the three rice developmental stages were 2.40–2.25% and 1.89–1.31%, respectively. The one-slope and modified two-slope log-distance model had better applicability for modeling of wireless channels in rice fields. The estimated RE values for the modified two-slope log-distance model were all less than 2%, which improved the performance of the one-slope log-distance model. This validates that the modified two-slope log-distance model had better applicability in a rice field environment than the other models. These data provide a basis for modeling of sensor network channels and construction of wireless sensor networks in rice fields. Our results will aid in the design of effective rice field WSNs and increase the transmission quality in rice field sensor networks.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling of Path Loss for Radio Wave Propagation in Wireless Sensor Networks in Cassava Crops Using Machine Learning;Agriculture;2023-10-25

2. Path loss model based on exponential water cycle algorithm for wireless sensor network;International Journal of Communication Systems;2023-07-31

3. Factors controlling cell coverage in cellular networks;THE FOURTH SCIENTIFIC CONFERENCE FOR ELECTRICAL ENGINEERING TECHNIQUES RESEARCH (EETR2022);2023

4. Low-cost Radio Channel Sounder for the ISM 2.4 GHz Band;2022 IEEE Conference on Antenna Measurements and Applications (CAMA);2022-12-14

5. Low-Altitude-Platform-Based Airborne IoT Network (LAP-AIN) for Water Quality Monitoring in Harsh Tropical Environment;IEEE Internet of Things Journal;2022-10-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3