SAOCNN: Self-Attention and One-Class Neural Networks for Hyperspectral Anomaly Detection

Author:

Wang Jinshen,Ouyang Tongbin,Duan Yuxiao,Cui Linyan

Abstract

Hyperspectral anomaly detection is a popular research direction for hyperspectral images; however, it is problematic because it separates the background and anomaly without prior target information. Currently, deep neural networks are used as an extractor to mine intrinsic features in hyperspectral images, which can be fed into separate anomaly detection methods to improve their performances. However, this hybrid approach is suboptimal because the subsequent detector is unable to drive the data representation in hidden layers, which makes it a challenge to maximize the capabilities of deep neural networks when extracting the underlying features customized for anomaly detection. To address this issue, a novel unsupervised, self-attention-based, one-class neural network (SAOCNN) is proposed in this paper. SAOCNN consists of two components: a novel feature extraction network and a one-class SVM (OC-SVM) anomaly detection method, which are interconnected and jointly trained by the OC-SVM-like loss function. The adoption of co-training updates the feature extraction network together with the anomaly detector, thus improving the whole network’s detection performance. Considering that the prominent feature of an anomaly lies in its difference from the background, we designed a deep neural extraction network to learn more comprehensive hyperspectral image features, including spectral, global correlation, and local spatial features. To accomplish this goal, we adopted an adversarial autoencoder to produce the residual image with highlighted anomaly targets and a suppressed background, which is input into an improved non-local module to adaptively select the useful global information in the whole deep feature space. In addition, we incorporated a two-layer convolutional network to obtain local features. SAOCNN maps the original hyperspectral data to a learned feature space with better anomaly separation from the background, making it possible for the hyperplane to separate them. Our experiments on six public hyperspectral datasets demonstrate the state-of-the-art performance and superiority of our proposed SAOCNN when extracting deep potential features, which are more conducive to anomaly detection.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3