Hyperspectral Anomaly Detection via Low-Rank Representation with Dual Graph Regularizations and Adaptive Dictionary

Author:

Cheng Xi1ORCID,Mu Ruiqi1,Lin Sheng1ORCID,Zhang Min1ORCID,Wang Hai1

Affiliation:

1. School of Aerospace Science and Technology, Xidian University, Xi’an 710126, China

Abstract

In a hyperspectral image, there is a close correlation between spectra and a certain degree of correlation in the pixel space. However, most existing low-rank representation (LRR) methods struggle to utilize these two characteristics simultaneously to detect anomalies. To address this challenge, a novel low-rank representation with dual graph regularization and an adaptive dictionary (DGRAD-LRR) is proposed for hyperspectral anomaly detection. To be specific, dual graph regularization, which combines spectral and spatial regularization, provides a new paradigm for LRR, and it can effectively preserve the local geometrical structure in the spectral and spatial information. To obtain a robust background dictionary, a novel adaptive dictionary strategy is utilized for the LRR model. In addition, extensive comparative experiments and an ablation study were conducted to demonstrate the superiority and practicality of the proposed DGRAD-LRR method.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities and the Innovation Fund of Xidian University.

Publisher

MDPI AG

Reference78 articles.

1. DICAM: Deep inception and channel-wise attention modules for underwater image enhancement;Tolie;Neurocomputing,2024

2. Dual-GAN complementary learning for real-world image denoising;Zhao;IEEE Sens. J.,2024

3. Image processing with neural networks—A review;Handels;Pattern Recognit.,2002

4. Satellite video single object tracking: A systematic review and an oriented object tracking benchmark;Chen;ISPRS J. Photogramm. Remote Sens.,2024

5. Deep unsupervised blind hyperspectral and multispectral data fusion;Li;IEEE Geosci. Remote Sens. Lett.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3