A Region-Based Feature Fusion Network for VHR Image Change Detection

Author:

Chen PanORCID,Li CongORCID,Zhang BingORCID,Chen ZhengchaoORCID,Yang XuanORCID,Lu KaixuanORCID,Zhuang LinaORCID

Abstract

Deep learning (DL)-based architectures have shown a strong capacity to identify changes. However, existing change detection (CD) networks still suffer from limited applicability when it comes to multi-scale targets and spatially misaligned objects. For the sake of tackling the above problems, a region-based feature fusion network (RFNet) for CD of very high spatial resolution (VHR) remote sensing images is proposed. RFNet uses a fully convolutional Siamese network backbone where a multi-stage feature interaction module (MFIM) is embedded in the dual encoder and a series of region-based feature fusion modules (RFFMs) is used to generate change information. The MFIM fuses features in different stages to enhance the interaction of multi-scale information and help the network better distinguish complex ground objects. The RFFM is built based on region similarity (RSIM), which measures the similarity of bitemporal features with neighborhoods. The RFFM can reduce the impact of spatially offset bitemporal targets and accurately identify changes in bitemporal images. We also design a deep supervise strategy by directly introducing RSIM into loss calculation and shortening the error propagation distance. We validate RFNet with two popular CD datasets: the SECOND dataset and the WHU dataset. The qualitative and quantitative comparison results demonstrate the high capacity and strong robustness of RFNet. We also conduct robustness experiments and the results demonstrate that RFNet can deal with spatially shifted bitemporal images.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3