Unsupervised Noise-Resistant Remote-Sensing Image Change Detection: A Self-Supervised Denoising Network-, FCM_SICM-, and EMD Metric-Based Approach

Author:

Xie Jiangling1,Li Yikun123,Yang Shuwen123,Li Xiaojun123ORCID

Affiliation:

1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China

2. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China

3. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, No. 88 Anning West Road, Lanzhou 730070, China

Abstract

The detection of change in remote-sensing images is broadly applicable to many fields. In recent years, both supervised and unsupervised methods have demonstrated excellent capacity to detect changes in high-resolution images. However, most of these methods are sensitive to noise, and their performance significantly deteriorates when dealing with remote-sensing images that have been contaminated by mixed random noises. Moreover, supervised methods require that samples are manually labeled for training, which is time-consuming and labor-intensive. This study proposes a new unsupervised change-detection (CD) framework that is resilient to mixed random noise called self-supervised denoising network-based unsupervised change-detection coupling FCM_SICM and EMD (SSDNet-FSE). It consists of two components, namely a denoising module and a CD module. The proposed method first utilizes a self-supervised denoising network with real 3D weight attention mechanisms to reconstruct noisy images. Then, a noise-resistant fuzzy C-means clustering algorithm (FCM_SICM) is used to decompose the mixed pixels of reconstructed images into multiple signal classes by exploiting local spatial information, spectral information, and membership linkage. Next, the noise-resistant Earth mover’s distance (EMD) is used to calculate the distance between signal-class centers and the corresponding fuzzy memberships of bitemporal pixels and generate a map of the magnitude of change. Finally, automatic thresholding is undertaken to binarize the change-magnitude map into the final CD map. The results of experiments conducted on five public datasets prove the superior noise-resistant performance of the proposed method over six state-of-the-art CD competitors and confirm its effectiveness and potential for practical application.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3