Abstract
Time series of SAR imagery combined with reference ground data can be suitable for producing forest inventories. Copernicus Sentinel-1 imagery is particularly interesting for forest mapping because of its free availability to data users; however, temporal dependencies within SAR time series that can potentially improve mapping accuracy are rarely explored. In this study, we introduce a novel semi-supervised Long Short-Term Memory (LSTM) model, CrsHelix-LSTM, and demonstrate its utility for predicting forest tree height using time series of Sentinel-1 images. The model brings three important modifications to the conventional LSTM model. Firstly, it uses a Helix-Elapse (HE) projection to capture the relationship between forest temporal patterns and Sentinel-1 time series, when time intervals between datatakes are irregular. A skip-link based LSTM block is introduced and a novel backbone network, Helix-LSTM, is proposed to retrieve temporal features at different receptive scales. Finally, a novel semisupervised strategy, Cross-Pseudo Regression, is employed to achieve better model performance when reference training data are limited. CrsHelix-LSTM model is demonstrated over a representative boreal forest site located in Central Finland. A time series of 96 Sentinel-1 images are used in the study. The developed model is compared with basic LSTM model, attention-based bidirectional LSTM and several other established regression approaches used in forest variable mapping, demonstrating consistent improvement of forest height prediction accuracy. At best, the achieved accuracy of forest height mapping was 28.3% relative root mean squared error (rRMSE) for pixel-level predictions and 18.0% rRMSE on stand level. We expect that the developed model can also be used for modeling relationships between other forest variables and satellite image time series.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Business Finland
European Space Agency
Subject
General Earth and Planetary Sciences
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献