A Novel Framework for Forest Above-Ground Biomass Inversion Using Multi-Source Remote Sensing and Deep Learning

Author:

Zhang Junxiang1,Zhou Cui1,Zhang Gui1,Yang Zhigao1,Pang Ziheng1,Luo Yongfeng1ORCID

Affiliation:

1. College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China

Abstract

The estimation of forest above-ground biomass (AGB) can be significantly improved by leveraging remote sensing (RS) and deep learning (DL) techniques. In this process, it is crucial to obtain appropriate RS features and develop a suitable model. However, traditional methods such as random forest (RF) feature selection often fail to adequately consider the complex relationships within high-dimensional RS feature spaces. Moreover, challenges related to parameter selection and overfitting inherent in DL models may compromise the accuracy of AGB estimation. Therefore, this study proposes a novel framework based on freely available Sentinel-1 synthetic aperture radar (SAR) and Sentinel-2 optical data. Firstly, we designed new indices through the formula analogous with vegetation index calculation to integrate multidimensional spectral and structural information. Then, leveraging the simplicity of computational principles, a pigeon-inspired optimization algorithm (PIO) was introduced into a bi-directional long short-term memory neural network (PIO-BiLSTM), which achieved the set objective function through repeated iteration and validation to obtain the optimal model parameters. Finally, to verify the framework’s effect, we conducted experiments in two different tree species and compared another seven classical optimization algorithms and machine learning models. The results indicated that the new indices significantly improved the inversion accuracy of all models in both categories, and the PIO-BiLSTM model achieved the highest accuracy (Category-1: R2 = 0.8055, MAE = 8.8475 Mg·ha−1, RMSE = 12.2876 Mg·ha−1, relative RMSE = 18.1715%; Category-2: R2 = 0.7956, MAE = 1.7103 Mg·ha−1, RMSE = 2.2887 Mg·ha−1, relative RMSE = 9.3000%). Compared with existing methods, the proposed framework greatly reduced the labor costs in parameter selection, and its potential uncertainty also decreased by up to 9.0%. Furthermore, the proposed method has a strong generalization ability and is independent of tree species, indicating its great potential for future forest AGB inversion in wider regions with diverse forest types.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3