Abstract
Meteorological satellites are usually operated at high temporal resolutions, but the spatial resolutions are too poor to identify ground content. Super-resolution is an economic way to enhance spatial details, but the feasibility is not validated for meteorological images due to the absence of benchmarking data. In this work, we propose the FY4ASRgray and FY4ASRcolor datasets to assess super-resolution algorithms on meteorological applications. The features of cloud sensitivity and temporal continuity are linked to the proposed datasets. To test the usability of the new datasets, five state-of-the-art super-resolution algorithms are gathered for contest. Shift learning is used to shorten the training time and improve the parameters. Methods are modified to deal with the 16-bit challenge. The reconstruction results are demonstrated and evaluated regarding the radiometric, structural, and spectral loss, which gives the baseline performance for detail enhancement of the FY4A satellite images. Additional experiments are made on FY4ASRcolor for sequence super-resolution, spatiotemporal fusion, and generalization test for further performance test.
Funder
the National Natural Science Foundation of China
the Jiangxi Provincial Institute of Water Sciences
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献