Insight of Salt Spray Corrosion on Mechanical Properties of TA1-Al5052 Self-Piercing Riveted Joint

Author:

Lai Jiamei,Huang ZhichaoORCID,Tang Nanlin,Hu Zhaoxiao,Jiang YuqiangORCID

Abstract

Self-piercing riveted (SPR) joints in automobiles inevitably suffer from corrosion damage and performance reduction. In this work, the influence of salt spray corrosion on the mechanical properties of TA1-Al5052 alloy SPR joints was studied. The TA1-5052 SPR joints were prepared and salt spray tests were carried out for different durations. The static and fatigue strengths of the joints after salt spray corrosion were tested to analyze the effect of salt spray duration on the performance of the joints. The results show that the joints’ static strength and fatigue strength decrease with prolonged salt spray time. The salt spray duration affects the joint’s tensile failure mode. The tensile failure without corrosion and with a short salt spray time is the fracture failure of the lower aluminum sheet, and the tensile failure of the joints after a long time of salt spray corrosion is the failure of the rivets. The fatigue failure form of the SPR joint is the formation of fatigue cracks in the lower aluminum sheet, and salt spray time has little effect on the fatigue failure form. Salt spray corrosion can promote the initiation and propagation of fatigue cracks. The fatigue crack initiation area is located at the boundary between the lower aluminum sheet and the rivet leg. The initiation of cracks originates from the wear zones among the sheet metal, rivets, and salt spray particles.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3