Effect of Basalt Powder on Hydration, Rheology, and Strength Development of Cement Paste

Author:

Li Jiaming,Che Dehao,Liu Zhihao,Yu Lan,Ouyang Xiaowei

Abstract

Basalt materials (e.g., basalt powder, aggregate, and fiber) are commonly used in cement-based materials. To understand the mechanism of the influence of basalt on the properties of cement-based materials (i.e., fluidity, hydration, and strength), zeta potential tests with different Ca2+ concentrations were carried out using basalt powder (BP). It is found that BP has a weaker absorption for Ca2+ compared to cement and quartz particles, which is directly related to its surface chemical properties. This weak absorption has a significant influence on the rheology and early-age hydration of cement paste. Moreover, the morphology of hydrate on the surface of the material observed by scanning electron microscope (SEM) also shows that the growth of CSH on the surface of BP particles is smaller than that of cement particles, indicating that BP delays the formation of CSH. Rheological tests showed that the reduction of BP’s adsorption of calcium ions weakened the electrostatic repulsion between particles, which led to the reduction of rheological properties. The influence of BP on the strength of cement paste was studied through crack characterization and fracture observation. The results show that the interfacial strength between BP and hydration products is very weak and does not increase with the hydration process, and the chemical reaction of BP is not obvious. In addition, the substitution of BP for cement leads to a dilution effect. These factors cause the strength of cement paste to decrease.

Funder

National Nature Science Foundation of China

Natural Science Foundation of Guangdong Province

111 Project

Guangzhou Municipal Science and Technology Project

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3