Structural Lightweight Concrete Containing Basalt Stone Powder

Author:

Ramezani Amir Mohammad1,Khajehdezfuly Amin1ORCID,Poorveis Davood1

Affiliation:

1. Department of Civil Engineering, Faculty of Civil Engineering and Architecture, Shahid Chamran University of Ahvaz, Ahvaz 83151-61355, Iran

Abstract

In spite of the demonstrated efficacy of basalt stone powder as a cost-effective and readily available additive in enhancing the mechanical properties and durability of ordinary-weight concrete, its application in Structural Lightweight Concrete (SLWC) remains unexplored. This study introduced a mixing design for SLWC incorporating Light Expanded Clay Aggregates (LECAs) and basalt stone powder with a subsequent evaluation of its strength and durability characteristics. The experimental procedure involved creating various samples, considering differing proportions of cement, water, basalt stone powder, sand, LECA, superplasticizer, and aerating agent. The compressive strength and density of the 28-day-cured concrete specimens were determined. An optimal SLWC with a compressive strength of 42 MPa and a density of 1715 kg/m3 was identified. The flexural and tensile strength of the optimal SLWC exceeded those of ordinary-weight concrete by 6% and 3%, respectively. Further evaluation revealed that the optimal SLWC exhibited 1.46% water absorption and an electrical resistivity of 139.8 Ohm.m. Notably, the high porosity of LECA contributed to the low durability of SLWC. To address this, cost-effective external coatings of emulsion and fiberglass were applied to enhance the durability of the SLWC. Four coating scenarios, including one-layer bitumen, two-layer bitumen, three-layer bitumen, and three-layer bitumen with fiberglass, were investigated. The measurements of electrical resistance and compressive strength revealed that the use of three layers of emulsion bitumen and fiberglass improved the durability of the concrete by over 90% when the SLWC was exposed to severe chloride attack. Consequently, the durability of the SLWC with an external coating surpassed that of ordinary-weight concrete.

Funder

Shahid Chamran University of Ahvaz

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3